
Quantum Inf Process
DOI 10.1007/s11128-015-1063-4

Coherent state quantum key distribution based
on entanglement sudden death

Gregg Jaeger1 · David Simon2,3 ·
Alexander V. Sergienko3,4

Received: 25 June 2015 / Accepted: 27 June 2015
© Springer Science+Business Media New York 2015

Abstract A method for quantum key distribution (QKD) using entangled coherent
states is discussed which is designed to provide key distribution rates and transmission
distances surpassing those of traditional entangled photon pair QKD by exploiting
entanglement sudden death. The method uses entangled electromagnetic signal states
of ‘macroscopic’ average photon numbers rather than single photon or entangled
photon pairs, which have inherently limited rate and distance performance as bearers
of quantum key data. Accordingly, rather than relying specifically on Bell inequalities
as do entangled photon pair-based methods, the security of this method is based on
entanglement witnesses and related functions.

Keywords Quantum key distribution · Entanglement sudden death · Entanglement
witness · Entanglement · Coherent states · Quantum cryptography · Eavesdropping
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1 Introduction

Advanced quantum key distribution (QKD) is the distribution of random, shared
encryption key material between two or more parties using quantum physical sig-
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nals, with the security of the distribution based on the fundamental laws of quantum
theory [1]. The original methods for performing QKD were based on low-intensity
light signals, somethingwhichmakes the presence of eavesdropping easy to detect due
to the relatively large disturbance that any quantum measurement will have on such
states when the details of state preparation—for example, the elements of the basis in
which the pure state density matrix of the signal states is diagonal—are unknown to
the eavesdropper. In basic QKD protocols, two participants—conventionally referred
to as Alice and Bob—generate a shared binary encryption key in such a way that an
eavesdropper, called Eve, cannot obtain useful knowledge regarding the key without
being detectable. In this way, communication system security is greatly strengthened
beyond what traditional, classical cryptographic methods can offer. However, the effi-
ciencies and effective distances of QKD schemes based on low-intensity signals—for
example, those using single photons or entangled photon pairs—are limited by the
relative ease with which individual photons are lost to the environment, because such
losses have a great effect on the signal state. The use of higher intensity signals is an
obvious alternative, but one which must similarly ensure that any eavesdropping be
detectable. Here, such an alternative is pursued in a system using entangled coherent
states of light.

Although the use of entanglement offers specific technical advantages to any QKD
system, entanglement sudden death (ESD), the loss of entanglement in finite times
and distances, has the potential to threaten QKD system integrity, particularly in few
photon level-based systems. For this reason, we recently addressed this threat from a
theoretical point of view in the realm of low photon number systems, for overcoming
the threat of ESD through the use of decoherence free subspaces (DFSs) and related
techniques; we showed that, although this threat can be mitigated in some cases, it
cannot always be overcome in the low-intensity QKD context [2,3]. Fortunately, this
threat is far less pronounced at high intensities and can even be used to advantage.
Here, we discuss such an entangled coherent state approach to QKD, which, because
it is not based on low-intensity signals, does not involve a design based on DFSs
to resist ESD, but rather has the capacity to exploit ESD to provide security against
eavesdropping [4].

We show here that one may overcome the limitations of the above-mentioned
shortcomings of single photon-based or photon pair-based methods by using pairs
of entangled coherent states of the quantum electromagnetic field. Greater efficiency
and transmission distances can be achieved with such states because coherent states
are robust to partial beam loss. Not unexpectedly, large effective distances and rela-
tively high transmission rates come at some cost to security: Eavesdropping can be
more difficult to detect because even a small portion of the signal beam can be useful
in obtaining knowledge of the states being exchanged by those attempting to share
a secure string of cryptographic key bits. Creating the required entangled coherent
states [5,6] is also a greater challenge than creating entangled photon pairs, which
can be done efficiently using quantum parametric down-conversion, cf. [7]. However,
the latter problem is only one of current practice, not one of principle or foreseeable
practice. A number of QKD methods based on the use of coherent states have been
proposed, but fewer have been based on the use of entangled coherent states. The spe-
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cific method offered here is the entangling of a pair of coherent states via a conditional
nonlinear interaction with auxiliary single photons [8].

2 Phase-entangling coherent states and encoding key bit values

In order to produce an entangled state of two electromagnetic field modes involving
just a single photon, such as

1√
2

(
|0〉|1〉 + eiφ |1〉|0〉

)
, (1)

a single beam splitter and a photonwill suffice. In the casewhere one desires to produce
an entangled state of two coherent states of these modes, more is required [9]. A
relatively simple approach is that of the QKD signal state preparation of [8], in which
a beam splitter is used to prepare a single photon in a spatial path state superposition in
only one of which will the nonlinear interaction, such as that involving the Kerr effect,
be able to take place with each of two coherent states in any complete process; this
then prepares a phase-entangled coherent state QKD signal state, the phase of which
can be measured through homodyning.

A general Kerr interaction between a photon number eigenstate of the electromag-
netic field and a coherent state can be described as follows. This interaction coupling
of strength χ can be described by the Hamiltonian H = −h̄χa†1a1a

†
2a2, so that the

interaction of amode in the Fock state |n〉with amode in the coherent state |α〉 is given
by ei h̄HT |α〉|n〉 = |αeinθ 〉|n〉, where α is a complex number providing the complex
state amplitude corresponding to a distribution over particle number; the resulting
phase shift θ on the coherent state is determined by χ and by the interaction time T .

In the situation of interest here, that inwhich the entangled coherent state is prepared
in the laboratory of the sender, Alice, entangled coherent state preparation proceeds
as follows. As illustrated in Fig. 1, a coherent state produced by a laser is directed to
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Kerr
Medium
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BS

Kerr
Medium

Single
photon
input
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Beam
B

D1

D2

Phase
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Fig. 1 (Color online) State preparation for a user-symmetric coherent state key distribution system with
entanglement prepared by single photon inputs via the Kerr effect. An initial beam splitter splits an initial
coherent states beam into two equal-amplitude states, while single photons enter a superposition of two
paths on a second beam splitter, resulting in a superposition of two coherent state joint states having opposite
phase shifts
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a beam splitter, which produces a pair of coherent states |α〉 in two distinct beams.
The states of these beams are then entangled by a possible nonlinear interaction of
each of them conditionally to a single photon (as described, for example, in Ref. [8]),
a different beam splitter having put the photon into a superposition, such as that of
Eq. 1, of two paths of a Mach–Zehnder-type interferometer within Alice’s laboratory.
Thus, if the photon were to follow the upper path, then the coherent state of beam B
is phase shifted by 2φ due to cross-phase modulation of the photon with the beam
in a nonlinear medium, such as a Kerr medium, for example [10–15]; if the photon
were to take the lower path, the coherent state in Beam A would be phase shifted by
2φ. Adding a constant phase shift of φ to both beams will then result in the sort of
entangled output state desired:

|ψ〉 = N√
2

(
|α+〉|β−〉 + eiθ |α−〉|β+〉

)
, (2)

where α± ≡ αe±iφ, β± ≡ βe±iφ , and |N |2 =
(
1 + cos θ e−4α2 sin2 φ

)−1
, the single

photon states not being explicitly described here for simplicity of illustration. Note
that, ±φ are the phase shifts of the coherent states, whereas θ is simply the single
photon state phase as determined by the photon’s trajectory. By keeping only those
events in which the photon is detected at D1, one has θ = π ; for those events in which
it exits at D2, one has instead θ = 0. (If other values of θ were desired, one could
simple increase the effective path difference, for example, by placing glass in one of
the paths.)

The approach to QKD described here can be seen to use a method for entangled
coherent state preparation similar to that offered in [8]. However, the method of eaves-
dropping detection used there, namely based on testing for a Bell-type inequality
violation, is rather inefficient. Therefore, we instead base our approach on a related
but much more efficiently measured quantity, namely an entanglement witness, cf.
[16,17]. Entanglement, being a weaker property than Bell violation, has the poten-
tial to increase the allowed operating distance for the QKD system we describe here.
Entanglement is tested bymeasuring the value of thewitness, something in the simplest
case readily done through basic homodyne measurements. An apparatus for imple-
menting the entangled coherent state quantum key distribution method is shown in
Fig. 2, below. By making homodyne measurements, Alice and Bob can each measure
the phase of the state in their respective beams. Since the shifts in the two beams
are always opposite in sign, Alice and Bob can readily use the relative sign of their
measured shifts to obtain the desired common key. Thus, for example, when Alice
finds −φ and Bob finds +φ, the two can follow the convention that this indicates a
shared common bit value of 1 and in the alternative case where the signs of the two
phases are exchanged, take this to indicate the bit value 0.

3 Effect of noise on entangled coherent states

The primary noise mechanism (and eavesdropping effect) acting on the entangled
coherent states in the environment that must be taken into account is the loss of

123



Coherent state quantum key distribution based on...

Fig. 2 (Color online) An apparatus for implementing the entangled coherent state quantum key distribution
method described here. After state preparation by the apparatus of the previous figure, the users identify
the states they receive by means of standard homodyne detection measurements

photons during propagation of the key distributing state, given by Eq. 2. The most
general expression of interest for investigating it is that of the time evolution of the
corresponding state of the two-mode system. For the purpose of illustration of the
effect of this noise on coherent states, let us first review a simple case, one in which
entangled quantum states are prepared in an extreme case where |α+〉 = |α〉, |α−〉 =
|−α〉, |β−〉 = |−α〉, and |β+〉 = |α〉, that is, one begins with the entangled coherent
state considered in [6], namely

|	〉 = N±
α (|α〉| − α〉 ± | − α〉|α〉) , (3)

where N±
α = 1/

√
2 ± 2e−4|α|2 . This is a state of the form of Eq. 2 where α+ =

β+ = α, α− = β− = −α, φ = π
2 , and θ = 0, π . The effect on the outer product of

two coherent states, under the standard assumption that the number of photons in the
environment of the transmitted states is very small within the optical frequency range
of the states involved, can be written

|α〉〈β| → exp
[
−(1 − κ)

{(
|α|2 + |β|2

)
/2 − αβ∗}]

|√κα〉〈√κβ|, (4)

where κ ≡ e−γ τ , with γ being the decay constant for the medium, so that the resulting
density matrix for the state is

ρ±(τ ) = (N±
α )2

{
|tα〉〈tα| ⊗ | − tα〉〈−tα| + | − tα〉〈−tα| ⊗ |tα〉〈tα| ± e4α

2r2

× (|tα〉〈−tα| ⊗ | − tα〉〈tα| + h.c.)
}

, (5)

where t = √
κ and r = √

1 − t2 is a normalized time parameter, cf. e.g., [18,19]. The
most useful representation of states ρ±(τ ) is that in the basis

|±〉 = (
N±

α

)
(|tα〉 ± | − tα〉) . (6)
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Our interest here is in antisymmetric states of the type ρ−(τ ), which in this basis has
taken the form

ρ±(τ ) =
(
N±

α /
√
2
)2

⎛
⎜⎜⎝

A 0 0 D
0 B −B 0
0 −B B 0
D 0 0 C

⎞
⎟⎟⎠ , (7)

where

A = e4
(
1−r2

)
α2

(
−1 + e4r

2α2
) (

1 + e−2(1−r2)α2
)2

(8)

B = −1 + e4α
2 − e4r

2α2 + e4
(
1−r2

)
α2

(9)

C = e4
(
1−r2

)
α2

(
−1 + e4r

2α2
) (

−1 + e2(1−r2)α2
)2

(10)

D = −1 − e4α
2 + e4r

2α2 + e4
(
1−r2

)
α2

, (11)

of a form often called X-state form [20].
In themore realistic casewhere the entanglingmechanism usingKerr nonlinearities

is unable to create states of the form of Eq. 3 due to the difficulty of obtaining large
phase shifts, the density matrix is of a less simple form. However, the effect of photon
loss noise on the QKD signal states in such cases, which remain of the form of Eq. 2
with smaller induced phase shifts−φ, can be considered effectively via corresponding
annihilation operators, namely

â j → t j â j +
√
1 − t2j â

(E)
j (12)

where E denotes the vacuum or environment and j labels orthogonal states. This
approach suffices to provide uswith the necessary information for practically analyzing
the effects of noise and eavesdropping. In particular, this can be done by directly
considering the effects of the noise on beam correlations, as demonstrated in the
following section. Because an eavesdropper, Eve, may readily obtain a portion of
the signal beam transmitted by Alice and infer its state, she would be capable of
determining the key if her activity were to go undetected. Thus, one needs a means
for detecting her activity. Once any effect on states consistent with eavesdropping is
discovered, one can remove from the transmitted key any key bit values which may
have been so discovered.

4 Eavesdropper detection

The method for detecting eavesdropping using entanglement witnessing naturally fits
our entangled coherent signal states. An entanglement witness S is defined as a quan-
tity such that S < 0 whenever a system is entangled. When S ≥ 0, in general,
the entanglement or separability of the system cannot be inferred from such a quan-
tity. Nonetheless, so-called strong entanglement witnesses also exist, which provide
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both necessary and sufficient conditions for entanglement. In particular, for entangled
Gaussian states of the electromagnetic field, which include the coherent states, there is
a witness [21] based on the positive partial trace criterion [16,22] which can be made
use of here.

Before looking at a true entanglement witness for the system in question, let us first
look at a different quantity W , which in Ref. [4] we referred to as an eavesdropping
witness. To understand this quantity, let us assume that q̂1, p̂1 is pair of orthogonal
quadratures for beamA and q̂2, p̂2 is the corresponding pair of quadratures for B. Then
one can form the vector ξ̂ = (

q̂1, p̂1, q̂2, p̂2
)
and the covariance matrix, defined as the

4×4matrix,with elementsVi j = 1
2 〈

{
ξ̂i − 〈ξi 〉, ξ̂ j − 〈ξ j 〉

}
〉,where {.. , .. }denotes the

anticommutator and angular brackets denote expectation value. V itself is expressed

in terms of three 2×2 matrices as V =
(

A1 C
CT A2

)
; A1 and A2 are the self-covariance

matrices of each of beam separately, while C describes correlations between the two.
One pertinent entanglement witness ([21]) derived from the covariance matrix is

W = 1 + det V + 2 det C − det A1 − det A2. (13)

For coherent states, the system is entangled if and only ifW < 0. It is particular helpful
that V is experimentally measurable. In order to find V , Alice and Bob can make
quadrature measurements and compare their results. The covariance submatrices are
affected by noise, which has the effect of the transformation of annihilation operators
shown in Eq. 12, as follows.

C → C ′ = t1t2C, (14)

A j → A′
j = t2j

(
A j − 1

4
I

)
+ 1

4
I, (15)

where I is the corresponding identity matrix.
The quantity W is a strong entanglement witness for Gaussian systems [17,21].

For reasons described in [4], W is not a true entanglement witness for the entangled
coherent state system of Sect. 2. However, it does cross fromnegative to positive values
with distance, similar to the case of an entanglement witness in the presence of ESD,
and it does so at a distance that strongly correlates with a sudden change in the value
of the true entanglement witness S defined below [4]. This distance decreases in the
presence of eavesdropping;W is thus in some sensitive to changes in the entanglement
of the system and provides a practical useable signal of eavesdropping.

In the case we are considering, the coherent states are not orthogonal as the pairs
{|α〉, | − α〉} and {|β〉, | − β〉} themselves were in the previous section. Nonetheless,
many of the expressions for these states differ from those obtained in the ideal case
by exponentially small terms only: These terms are negligible for beams of sufficient
amplitude such as we consider here. In propagation of the signal, the transmission

matrices take form t j = e− 1
2 K j d j , where d j is the propagation distance in each arm.

One then uses these to determine the distances over whichW changes sign. The effect
on coherence states in two configurations of state source with Alice or state source
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Fig. 3 (Color online) a Symmetric decay: entanglement decays more rapidly due to state overlap. bAsym-
metric decay: entanglement decays more slowly because overlap occurs less quickly. The entanglement
decay rate controlled by the most slowly decaying state

midway between Alice and Bob, the symmetric and the asymmetric, is illustrated in
Fig. 3a, b, respectively.

In particular, indicating loss rates in the two arms of the QKD system we are
considering by K1 and K2, one finds

V =
(

A′
1 C ′

C ′ T A′
2

)
=

⎛
⎜⎜⎝
a′
1 0 b′ 0
0 a′

1 0 c′
b′ 0 a′

2 0
0 c′ 0 a′

2

⎞
⎟⎟⎠ , (16)

a′
j (d1, d2) =

(
a − 1

4

)
e−K j d j + 1

4
(17)

b′(d1, d2) = b e− 1
2 (K1d1+K2d2) (18)

c′(d1, d2) = c e− 1
2 (K1d1+K2d2), (19)

where j = i, 2, a, b, and c are the values of a′, b′, and c′ at before propagation, which
are:

a = |αN |2
2

f (θ, φ) − 1

2
|α|2 + 1

4
(20)

b = |αN |2
2

g(θ, φ) − 1

2
|α|2 cos 2φ (21)

c = |αN |2
2

g(θ, φ) − 1

2
|α|2, (22)

where f (θ, φ) =
[
1 + cos 2φ cos θe−4|α|2 sin2 φ

]
and g(θ, φ) = [cos 2φ

+ cos θe−4|α|2 sin2 φ
]
. These results hold for |αφ| >> 1; for the exact expressions,

see [4]. Note that the normalization N also implicitly depends on the two propagation
distances d j .

When the QKD system is configured so that the initial signal state |φ〉 is produced
in the laboratory of Alice, d1 ≈ 0, so that:
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W = 1 + b2c2e−2K2d2 + a2
((

a − 1

4

)
e−K2d2 + 1

4

)2

− (b2 + c2) e−K2d2 a

((
a − 1

4

)
e−K2d2 + 1

4

)

+ 2bc
(
e−K2d2

)
− a2 −

((
a − 1

4

)
e−K2d2 + 1

4

)2

. (23)

As shown in Fig. 4, W starts with large negative values when the second configu-
ration leg is a zero distance, d2 = 0. It then falls off dramatically with distance due to
the photon loss of the type described above.W decays toward zero and then changes
sign at a finite distance, which can be seen by careful examination of Fig. 5: This
crossing by W of the d-axis is analogous to the signaling of entanglement death at
finite distance (ESD) [23–25].

This exponential decay of the above terms is guided by the decrease in the mag-
nitude |α| and thus in average photon number. When φ is small enough to make the
approximation sin φ ≈ φ valid, one already finds e−4|α|2 sin2 φ ≈ e−4(|α|φ)2 falling to
the value .01 for |αφ| > 1.08; the terms involving the exponentials can therefore be
neglected when |αφ| is much greater than 1. In that range, one has the simple forms
for the parameters a = 1

4 and b = 0, c = −|α|2 sin2 φ of the general forms given
by Eqs. (20)–(22), allowing for concise expressions for the distance at which a sign
change occurs. In particular, one has in the symmetrical configuration where the dis-
tances to Alice and Bob from the signal source are the same and assuming that the loss
parameter K is equal, so that when K1d1 = K2d2 ≡ Kd, without restricting φ, one

finds that W changes sign when |α(d)| =
√

15
4 cscφ, so that there is crossing of the

axis at d = 2
K ln

(√
4
15α sin φ

)
. For the asymmetrical configuration in which Alice

produces signal states in her laboratory, crossing occurs at d2 = 4
K ln

(√
4
15α sin φ

)
.

In this asymmetric configuration, the state |ψ(d1, d2)〉 at distances d1 and d2 along
the two branches is given by Eq. 2 with α± → α±e− 1

2 K1d1, β± → β±e− 1
2 K2d2 , so that

Fig. 4 (Color online) Eavesdropping witness versus distance under the photon loss mechanism, assuming
no loss on Alice’s side. The parameter values are: α = 1000, φ = .01 (red dashed), α = 2000, φ = .01
(black, dotted), α = 1000, φ = .05 (green solid), α = 1000, φ = .1 (blue dash-dot). The value K =
.046 km−1 is used for the 1550nm telecom window
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Fig. 5 (Color online) A portion of the previous figure magnified to show the portion whereW curves cross
the d-axis. In the absence of eavesdropping, the crossing point is determined by the initial amplitude of the
coherent states

|ψ〉 = N

2

[
|α+e− 1

2 K1d1〉|α−e− 1
2 K2d2〉 + eiθ |α−e− 1

2 K1d1〉|α+e− 1
2 K2d2〉

]
. (24)

The overlap between states of this entangled superposition state increases as they both
decay in average photon number toward the same state of zero photons, as shown in
Fig. 3a.When the losses along the two arms differ, the states can be seen to move away
from each other in phase space, as shown in Fig. 3b, causing the crossing distance to
increase. This occurs for example in the most extreme asymmetric case, where there is
no loss in Alice’s arm, but Bob’s state decays toward the origin. Even in this extreme
case, entanglement will still eventually be lost, since for large d2 the state becomes

|ψ(0, d2)〉 ≈ N

2

(
|αeiφ〉A + eiθ |αe−iφ〉A

)
× |vac〉B , (25)

which is of product form and, so, unentangled.
If the eavesdropper, Eve, attempts to learn the signal state, she will change the

detected value of the two quadratures, whose measurement is part of the overall QKD
system design shown schematically in Fig. 2. Suppose an unauthorized experimenter
makesmeasurements of either or both quadratures of q̂ and p̂, the amplitude and phase
quadratures, respectively. The measurement of one quadrature will cause an increase
in the conjugate quadrature, leading to an increase in the overlap of the two coherent
states in phase space and a consequent drop in entanglement. The effect is similar to
that of photon loss: The photon loss can be modeled as the insertion of a beam splitter
in the beam, leading to increased noise from vacuum fluctuations in the unused port.
This vacuum noise similarly causes the quadratures to increase. The result is that
eavesdropping causes the system to act as if it has propagated a larger distance than it
actually has, and the effect of this can be seen by measuring W .

The effect of eavesdropping on the eavesdropping witnessW is shown in Fig. 6 for
a set of different degrees of eavesdropping strength, assuming that all gains are unity
and that detector noise may be neglected. One notes in particular that as eavesdropping
strength increases, as parameterized by the fraction |r |2 of beam intensity taken out
of the beam be Eve’s extraction beam splitter,W is affected in the same manner as by
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Fig. 6 (Color online) As the strength of eavesdropping attack (as parameterized by |r |2) increases, theW
curves decay faster and the location of the crossing point whereW changes sign appear at smaller distances,
thus signaling eavesdropping

transmission losses but prematurely, so that the distance at which crossing occurs is
shortened.

One chief advantage of using W instead of a true entanglement witness is that W
is easy to measure, requiring only standard homodyne techniques. However, we can
also look at a true entanglement witness, such as the measure S, first introduced in
[30], and see whether true ESD occurs. S is defined by the determinant

S =
∣∣∣∣∣∣

1 〈b̂†〉 〈âb̂†〉
〈b̂〉 〈b̂†b̂〉 〈âb̂†b̂〉

〈â†b̂〉 〈â†b̂†b̂〉 〈â†âb̂†b̂〉

∣∣∣∣∣∣
. (26)

Here â is the annihilation operator at Alice’s location and b̂ is the corresponding opera-
tor for Bob’s. This witness is valid for any state, Gaussian, or otherwise. Alternatively,
we could consider

S̃ =
∣∣∣∣∣∣

1 〈â2〉 〈âb̂†〉
〈â†2〉 〈â†2â2〉 〈â†2âb̂†〉
〈â†b̂〉 〈â†â2b̂†〉 〈â†âb̂†b̂〉

∣∣∣∣∣∣
. (27)

Both S and S̃ are capable of detecting entanglement in non-Gaussian system states,
and each of them is capable of detecting some forms of entanglement that are missed
by the other.

Here, we considerS. For small displacement angle φ,S is negative definite (Fig. 7),
indicating an asymptotic decay of entanglement. However, if φ grows larger, ESD can
occur. For example, for φ = 1.5 rad, we see (Fig. 7) that the witness goes from zero to
a positive value at a finite distance, signaling ESD. Holding all other parameters fixed,
the value of S reaches its maximum positive value at φ = π

2 , that is, when the states
|α±〉 are simply the orthogonal pair | ± α〉 and the entangled state is simply that of
Eq. 3. Figure 8 shows the situation in the absence of eavesdropping. In the presence
of even mild eavesdropping, S becomes positive immediately after the eavesdropping
and then decays monotonically back to zero. So, once again, the alteration of the
behavior of the witness with distance provides a clear signal of tampering.
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Fig. 7 (Color online) For small phase shifts, the entangled coherent states have values of entanglement
witness S that are negative semi-definite (dashed blue line). However, for larger phase shifts, it is possible
for S to become positive at finite distance (solid red line), indicating ESD

Fig. 8 (Color online) When eavesdropping is added, the behavior of S is dramatically different from that
illustrated in the previous figure. Even a small amount of eavesdropping causes the value of S to become
positive after the eavesdropping. It then decays monotonically to zero. Here, by contrast, it is assumed
for simplicity that the eavesdropping occurs near the source. The three curves are for different values of
γ , a parameter that characterizes the information gain of the eavesdropper: For γ > 0, Eve gains little
information but also causes little disturbance, while for γ < 0 she gains more information at the expense
of making her actions more visible. As Eve obtains more information, the entanglement witness reaches
larger positive values

We see then that if appropriately chosen entangled states can be generated, then
eavesdropper detection in a QKD system can be provided by ESD, allowing QKD to
be securely conducted over long distances with strong beams.
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5 Experimental measurement of witnesses

Unlike W , both S and S̃ involve moments that are of higher than quadratic order in
the quadratures q and p, and so cannot be measured via simple homodyne detection. It
is the presence of these higher-order moments that allow them to detect non-Gaussian
types of entanglement that are missed by simpler witnesses. Here we briefly describe
how these and other higher-order entanglement witnessesmay be experimentally mea-
sured.

The system below (Figs. 9, 10) is capable of measuring both of these, or more
generally, of measuring any entanglement witness formed by up to four creation or
annihilation operators in eachmode (a or b). It is a special case of themethod described
in [31] and [32] for the measurements of arbitrary normal-ordered moments of optical
creation and annihilation operators. (Note that S and S̃ are both normal ordered:
The creation operators for each mode are to the left of their matching annihilation
operators.) To measure S, we need to be able to measure the actions of operators
â, â†, and â†â in Alice’s laboratory and the corresponding operators b̂, b̂†, and b̂†b̂ in
Bob’s laboratory.

The actions of the beam splitters and phase shifts can be readily traced through the
system to find the outputs at each detector. The result in Alice’s laboratory is that the
current at the j th detector is

ÎA j = â†j â j , (28)

for j = 1, 2, 3, 4, where:

Source

L.O.

BbaLAbaL

Signal
CorrelationClassical

Communication
Classical

Communication

Signal A Signal B

L.O. Signal L.O. Signal

|α |β
|γ |γ

Fig. 9 The setup for measuring expectation values of arbitrary products of creation and annihilation oper-
ators up to fourth order at each of two locations (Lab A and Lab B). Along with the entangled signal,
each laboratory is sent an identical local oscillator signal. Measurements of photocurrents are made in each
laboratory (see below) and then correlated via the classical communication channel
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Output to Correlator

φA

vacuumvacuum

vA-
^

aLO
^â

a+
^a-̂

a1̂a2̂a3̂a4̂

vA+
^

IA2IA3IA4 IA1

Signal A Local
Oscillator

(a)
Output to Correlator

φB

vacuumvacuum

vB-
^

aLO
^ b̂

b+
^ b-

^

b1
^ b2

^ b3
^ b4

^

vB+
^

IB2 IB3 IB4IB1

Signal BLocal
Oscillator

(b)

Fig. 10 a Interior of Alice’s laboratory. Alice can control the phase shift φA . The light strikes four pho-
todetectors at the bottom, producing four photocurrents, IA1, . . . , IA4. All the necessary operator moments
can be obtained from measuring the correlations between these four currents and four similar currents in
Bob’s laboratory. b Bob’s laboratory is a mirror image of Alice’s laboratory, with all A’s replaced by B’s

â1 = 1

2

(
â + i âLO

) + i√
2
v̂A+ (29)

â2 = i

2

(
â + i âLO

) + 1√
2
v̂A+ (30)

â3 = −1

2

(
â − i âLO

) + 1√
2
v̂A− (31)

â4 = i

2

(
â − i âLO

) + i√
2
v̂A−, (32)

where v̂A± represent the annihilation operators at the unused beam splitter ports.
Because the operators we are examining are already normal-ordered, there are no
commutators that can lead to these vacuum operators coming into play; therefore, the
v̂A± can be safely ignored.

Assume that the local oscillator (of amplitude γ ) is strong enough to be treated
classically. Then if we take the difference between two of the currents, we obtain the
quadratures of the signal:

ÎA1 − ÎA3 = ÎA2 − ÎA4 (33)

= γ

2

(
â† e−iψA + â e+iψA

)
(34)
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= γ Q̂ A(ψA), (35)

where ψA = (
φA + π

2

)
, φA is the phase shift given to the local oscillator in

Alice’s laboratory, and Q̂ A(ψA) is the quadrature at angle ψA. As special cases,
Q̂ A(0) = q̂A = 1

2

(
â + â†

)
and Q̂ A(−π

2 ) = p̂A = i
2

(
â† − â

)
are the “position” and

“momentum” quadratures of the signal. So measuring the expectation value of the
difference 〈 ÎA1 − ÎA2〉 at two phase shifts allows us to find 〈q̂A〉 and 〈 p̂A〉; then taking
the sum and difference of these gives us 〈â〉 and 〈â†〉.

Taking the sum of the two phase shifts instead of the difference, we obtain

ÎA1 + ÎA3 = ÎA2 + ÎA4 (36)

= 1

2

(
â†â + |γ |2

)
, (37)

so the known local oscillator amplitude γ can be subtracted off to get 〈â†â〉 from
〈 ÎA1 + ÎA2〉:

〈â†â〉 = 2〈 ÎA1 + ÎA2〉 − |γ 2|. (38)

The expectation operators on Bob’s side are obtained in a similar manner. Finally,
multiplying signals fromAlice’s and Bob’s laboratory allows the building up of expec-
tation values such as

〈â†b̂†b̂〉 =
〈[(

ÎA1(0) − ÎA2(0)
)

+ i
(
ÎA1

(
−π

2

)
− ÎA2

(
−π

2

))
·
(
2

(
ÎB1 + ÎB2

)

−|γ |2
)]〉

(39)

and
〈â†âb̂†b̂〉 =

〈(
2

(
ÎA1 + ÎA2

)
− |γ |2

)
·
(
2

(
ÎB1 + ÎB2

)
− |γ |2

)〉
. (40)

So we can build all of the entries of S from correlations between sums and differences
of easily measurable photocurrents.

In a similar manner, all of the moments needed for the other entanglement witness
S̃ can also be derived from the same arrangement. Notice that for S, we really only
need two of the four detectors in each laboratory. For S̃ or for other witnesses, all four
of the detectors in each laboratory will be needed, in order to build up expectation
values of the form 〈â2〉, 〈â†2â2〉, 〈â†2âb̂†〉, etc.

6 Conclusions

The design and principles of operation of a coherent state-based quantum key distri-
bution system based on the occurrence of entanglement sudden death and its early
onset due to the intervention of any eavesdropper were presented. This involved the
explanation of the effects of photon loss during signal state transmission and similar
but additional effect of eavesdropping leading to premature ESD. This system is note-
worthy because of its use of an entanglement witness for the eavesdropping detection
and advantage of the system over traditional fixed, few photon number signal-based

123



G. Jaeger et al.

QKD system in that it can operate with the ability to avoid key string detection by
eavesdroppers, as shown here, over distances of the order of one hundred kilome-
ters. Specific methods for measuring the witness used by the QKD method have been
provided as well as a detailed explanation of the anticipated behavior of them under
expected eavesdropping conditions.
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